首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   345篇
  免费   14篇
  2021年   9篇
  2020年   3篇
  2019年   3篇
  2018年   4篇
  2015年   4篇
  2014年   12篇
  2013年   10篇
  2012年   15篇
  2011年   26篇
  2010年   16篇
  2009年   9篇
  2008年   6篇
  2007年   12篇
  2006年   13篇
  2005年   5篇
  2004年   9篇
  2003年   11篇
  2002年   9篇
  2001年   6篇
  2000年   8篇
  1999年   3篇
  1996年   6篇
  1995年   4篇
  1994年   5篇
  1993年   5篇
  1992年   11篇
  1991年   10篇
  1990年   8篇
  1989年   9篇
  1988年   2篇
  1987年   6篇
  1986年   4篇
  1985年   2篇
  1984年   5篇
  1983年   4篇
  1982年   7篇
  1981年   10篇
  1980年   8篇
  1979年   4篇
  1978年   3篇
  1977年   2篇
  1976年   5篇
  1974年   2篇
  1973年   6篇
  1972年   7篇
  1970年   5篇
  1969年   2篇
  1964年   2篇
  1963年   2篇
  1962年   3篇
排序方式: 共有359条查询结果,搜索用时 62 毫秒
81.
82.
83.
Choline acetyltransferase (ChAT) catalyzes the reaction between choline and acetylcoenzyme A (AcCoA) to form acetylcholine (ACh) in nerve terminals. ACh metabolism has implications in numerous aspects of physiology and varied disease states, such as Alzheimer's disease. Therefore a specific, sensitive, and reliable method for detecting ChAT enzyme activity is of great utility in a number of situations. Using an existing radionuclide-based enzyme activity assay, we have observed detectable ChAT signals from non-cholinergic cells, suggesting a contaminant in the assay producing an artifactual signal. Previous reports have suggested that L-acetylcarnitine (LAC) contaminates many assays of ChAT activity, because of difficulties in separating LAC from ACh by organic extraction. To determine the source of this hypothesized artifact and to rectify the problem, we have developed a paper chromatography-based assay for the detection of acetylcholine and other contaminating reaction products of this assay, including LAC. Our first goal was to develop a simple and economical method for resolving and verifying the identities of various reaction products or contaminants that could be performed in most laboratories without specialized equipment. Our second goal was to apply this separation method in postmortem human brain tissue samples. Our assay successfully detected several contaminants, especially in assays using brain tissue, and allowed the separation of the intended ACh product from these contaminants. We further demonstrate that this assay can be used to measure carnitine acetyltransferase (CrAT) activity in the same samples, and assays comparing ChAT and CrAT show that CrAT is highly active in neuronal tissues and in neuronal cell cultures relative to ChAT. Thus, the simple chromatography-based assay we describe allows the measurement of specific reaction products separated from contaminants using commonly available and inexpensive materials. Further, we show that ChAT activity is significantly reduced in brain extracts from Alzheimer's disease compared to controls.  相似文献   
84.
Emergence of high-throughput sequencing tools and omics technologies paved the way for systems biology in last decade. While we have started to look at the biology of the plant in a more unified manner, the integration of such knowledge in agricultural biotechnology has become an arena of potential interest. The network of several central molecules operating in various life and developmental processes are now more adequately known, and fine tuning of such molecule pools, if connected to stress response, can result in enhanced stress tolerance of plants.This review interprets the potential of manipulation of myo-inositol and its derivatives in generation of transgenic crop plants. Being a molecule of central importance in plant life, inositol is connected to numerous life processes. The exploration of such pathways indicates that inositol itself and many of its derivatives can impart abiotic stress tolerance (against salinity, dehydration, chilling or oxidative stress) to plants when overexpressed. We propose that engineering inositol metabolic network is a potential approach towards stress-tolerant transgenic crop plant generation and thus its exploitation in agricultural biotechnology is the call of time.  相似文献   
85.
The objective of this study was to evaluate whether heart rate variability (HRV) can be used as an index of parasympathetic reactivation after exercise. Heart rate recovery after exercise has recently been shown to have prognostic significance and has been postulated to be related to abnormal recovery of parasympathetic tone. Ten normal subjects [5 men and 5 women; age 33 +/- 5 yr (mean +/- SE)] exercised to their maximum capacity, and 12 subjects (10 men and 2 women; age 61 +/- 10 yr) with coronary artery disease exercised for 16 min on two separate occasions, once in the absence of atropine and once with atropine (0.04 mg/kg) administered during exercise. The root mean square residual (RMS), which measures the deviation of the R-R intervals from a straight line, as well as the standard deviation (SD) and the root mean square successive difference of the R-R intervals (MSSD), were measured on successive 15-, 30-, and 60-s segments of a 5-min ECG obtained immediately after exercise. In recovery, the R-R interval was shorter with atropine (P < 0.0001). Without atropine, HRV, as measured by the MSSD and RMS, increased early in recovery from 4.1 +/- 0.4 and 3.7 +/- 0.4 ms in the first 15 s to 7.2 +/- 1.0 and 7.4 +/- 0.9 ms after 1 min, respectively (P < 0.0001). RMS (range 1.7-2.1 ms) and MSSD were less with atropine (P < 0.0001). RMS remained flat throughout recovery, whereas MSSD showed some decline over time from 3.0 to 2.2 ms (P < 0.002). RMS and MSSD were both directly related (r(2) = 0.47 and 0.56, respectively; P < 0.0001) to parasympathetic effect, defined as the difference in R-R interval without and with atropine. In conclusion, RMS and MSSD are parameters of HRV that can be used in the postexercise recovery period as indexes of parasympathetic reactivation after exercise. These tools may improve our understanding of parasympathetic reactivation after exercise and the prognostic significance of heart rate recovery.  相似文献   
86.
87.
Alzheimer disease (AD) is a progressive neurodegenerative disorder whose clinical manifestations appear in old age. The sporadic nature of 90% of AD cases, the differential susceptibility to and course of the illness, as well as the late age onset of the disease suggest that epigenetic and environmental components play a role in the etiology of late-onset AD. Animal exposure studies demonstrated that AD may begin early in life and may involve an interplay between the environment, epigenetics, and oxidative stress. Early life exposure of rodents and primates to the xenobiotic metal lead (Pb) enhanced the expression of genes associated with AD, repressed the expression of others, and increased the burden of oxidative DNA damage in the aged brain. Epigenetic mechanisms that control gene expression and promote the accumulation of oxidative DNA damage are mediated through alterations in the methylation or oxidation of CpG dinucleotides. We found that environmental influences occurring during brain development inhibit DNA-methyltransferases, thus hypomethylating promoters of genes associated with AD such as the β-amyloid precursor protein (APP). This early life imprint was sustained and triggered later in life to increase the levels of APP and amyloid-β (Aβ). Increased Aβ levels promoted the production of reactive oxygen species, which damage DNA and accelerate neurodegenerative events. Whereas AD-associated genes were overexpressed late in life, others were repressed, suggesting that these early life perturbations result in hypomethylation as well as hypermethylation of genes. The hypermethylated genes are rendered susceptible to Aβ-enhanced oxidative DNA damage because methylcytosines restrict repair of adjacent hydroxyguanosines. Although the conditions leading to early life hypo- or hypermethylation of specific genes are not known, these changes can have an impact on gene expression and imprint susceptibility to oxidative DNA damage in the aged brain.  相似文献   
88.
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号